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Abstract
Electrophoresis and sedimentation (or ultracentrifugation) are powerful means
for separating particles, proteins, and DNA, exploiting the difference in particle
charge, mass, and size. Surface properties of colloids and proteins are closely
related to their physical, chemical, and biological functions. Thus, the selection
of particles in terms of their surface properties is highly desirable. The
possibility of replacing a simple liquid like water by a complex liquid may
provide a novel route to particle separation. Here we report a new principle of
surface-sensitive particle selection by using nematic liquid crystal as a solvent.
When we immerse a particle in nematic liquid crystal, topological defects
are formed around a particle if there is a strong enough coupling between
the particle surface and liquid crystal orientation (so-called surface anchoring
effects). Then these defects strongly influence the motion of particles. Here
we study this problem by using a novel numerical simulation method which
incorporates elastic and nematohydrodynamic couplings properly. We find that
the surface anchoring properties change both direction and speed of motion of a
particle driven in an oriented nematic liquid crystal. This principle may be used
for separating particles in terms of their surface properties.

M This article features online multimedia enhancements

(Some figures in this article are in colour only in the electronic version)

Recently there has been a considerable interest in colloidal particles suspended in an anisotropic
solvent [1–10]. When particles are immersed in a nematic liquid crystal, the director field
of the nematic solvent around them is distorted due to the anchoring on the particle surface.
For a case of homeotropic anchoring, for example, three types of defect structures, dipole
(hedgehog), Saturn-ring, and surface-ring configuration, are known to be formed in a nematic
phase around a particle, depending upon the anchoring property and the particle size [1]. This
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elastic coupling between particles and nematic liquid crystal leads to rich static and dynamic
behaviour [1, 7–10]. We may expect that a driven particle in an anisotropic nematic liquid
exhibits unconventional exotic motion, depending upon surface anchoring properties of the
particle. This may be used for surface-sensitive particle separation. A recent proposal of a
special type of lyotropic liquid crystal that is water-based but non-surfactant and non-toxic (so-
called lyotropic chromonic liquid crystal) opens up novel possibilities to disperse biological
molecules and proteins in nematic liquid crystals [11]. Recent studies also suggest a possibility
of homogeneous dispersion of colloidal particles accompanying defects in a nematic liquid
crystal without aggregation up to a few volume % [5]. Thus, it may be possible to disperse
colloidal particles or biological molecules in a liquid crystal homogeneously. In this letter,
we demonstrate that by driving them by applying an external field we may perform surface-
sensitive particle separation, using the dependence of particle motion on surface anchoring
properties.

The understanding of motion of such an externally driven particle in a fluid is the
basis for electrophoresis [12] and sedimentation [13], which inevitably involve complex
hydrodynamic couplings between particle motion and the degrees of freedom of the host fluid.
The dynamics of nematic liquid crystals is linked to their peculiar hydrodynamics (known as
nematohydrodynamics) due to coupling between flow and director fields [14, 15]; for example,
the reorientation of the director field, which is used in electro-optical devices (e.g. displays),
is known to induce internal backflow and to affect the dynamic function of devices. Although
the basic hydrodynamics of liquid crystals is reasonably established [16], the dynamics of a
mixture of colloids and liquid crystal are still largely unknown. Since the local shear viscosity
of liquid crystal depends upon the local nematic order parameter [16], the motion of a particle
cannot be described by a simple Stokes law, which has been shown by theories and numerical
simulations [1, 17–23]. For example, Ruhwandl and Terentjev [17] studied the drag of a
particle with a Saturn-ring defect (e.g. figure 1(b)) and demonstrated that the friction depends
upon the angle between the applied force and the director field of the background nematic
solvent. During motion parallel to the direction of the directors, the friction is smaller than in
the perpendicular case. However, most previous studies dealt with steady particle motion at
low Ericksen numbers. The Ericksen number Er is a key parameter characterizing the ratio of
the viscous frictional force to the elastic force stored in a nematic liquid crystal. For small Er ,
we can neglect nonlinear effects and can assume a linear relation between the drag force and
the drag velocity, which simplifies the problem. However, intriguing behaviour characteristic
to colloids in a nematic solvent may occur at high Ericksen numbers. For example, Stark and
Ventzki [21, 22] studied a case of a particle with a hedgehog dipole defect and revealed its
non-linear Stokes drag and the coupling between the translational and rotational motion of the
particle. In this letter, we report exotic behaviours at higher Er , including cases of highly
nonlinear, nonsteady particle motion.

As described above, the hydrodynamics of a nematic liquid crystal with topological defects
at high Ericksen numbers is too complex for analytical studies, but may be tackled by numerical
simulation. Previous numerical simulation methods have been limited to rather particular
situations; for example, the particle positions have to be fixed. To describe the dynamics from a
single-particle to a many-particle system in a unified manner, it is highly desirable to develop an
efficient numerical simulation method that properly incorporates the dynamical coupling of the
relevant field variables, i.e. particle positions rn , orientational order parameter Qi j , and flow
field v. Molecular dynamics simulation is one possibility for including these three variables,
but it is rather slow. Here we propose a new numerical method that incorporates these three
variables in a physically natural manner. To simulate colloidal suspensions, the hydrodynamic
interaction between particles is one of the most serious obstacles because of its dynamic and
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Figure 1. (a) Snapshot of particles (a = 70 nm) dispersed in a nematic solvent. The volume
fraction is 1.8%. The particle has various anchoring strengths in the range 1.25 < W <

3.75 (×10−4 N m−1). The particle colour represents a value of W . Note that a Saturn-ring defect
is formed above Wc ≈ 2.5 × 10−4 N m−1 for a = 70 nm. ((b)–(i)) The motion of a particle
(green) with a Saturn-ring defect (blue) in the nematic phase, whose director field is drawn by black
lines. The external forces are applied on particles in parallel ((b)–(e)) and perpendicular ((f)–(i)) to
the magnetic field E, which is applied to the nematic solvent. The strength of the applied force is
Fz = 1, 5, 30, 50 pN for (b)–(e) and Fx = 5, 20, 30, 40 pN for (f)–(i), respectively. Note that (b)–
(d) and (f)–(g) are steady-state configurations. The thick arrow represents the direction of particle
motion. The simulated lattice size is 64 × 64 × 64. See also the supplementary videos available
at stacks.iop.org/JPhysCM/18/L193 (movies (b)–(i)).

long-range nature. The difficulties arise from the non-slip boundary condition (discontinuity)
on the surface of particles. To get rid of the difficulties, we introduced a smooth interface
approximation [24], which renders us able to describe the particle distribution by a continuous
field variable φn(r). A key feature of our method is to regard a solid colloidal particle as an
undeformable fluid one having much higher viscosity than that of the surrounding host liquid.
Thus, we called the method the ‘fluid particle dynamics (FPD)’ method [24]. We assume that
viscosity changes smoothly across the particle–solvent interface (the thickness ξ ). Thus, we
can remove the solid–fluid boundary condition, which is the origin of the difficulties. This
description of the particle distribution by a continuous field allows us to straightforwardly
incorporate other continuous field variables such as velocity and director fields [25–27]. By
using this novel simulation method, we study the motion of a driven particle immersed in a

http://stacks.iop.org/JPhysCM/18/L193
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nematic liquid crystal, including cases of high Ericksen numbers, revealing exotic behaviour.
We elucidate the nature of complex dynamic couplings between particle motion and the degrees
of freedom of nematic liquid crystal and demonstrate the application to particle separation.

Here we explain the details of our new simulation method based on FPD [24]. The coarse-
grained variables relevant for physically describing the dynamics of colloidal systems with
anisotropic host fluids are the colloidal particle positions rn , the nematic order parameter
Qi j [16] and fluid velocity field v. The index n stands for an individual particle. We express
fluid particle n using a function φn(r) as φn(r) = [tanh{(a − |r − rn|)/ξ} + 1]/2, where a
and ξ are the radius and the interface width of the particle, respectively [24]. For the particle
dispersion in nematic liquid crystal, we employ the following free energy functional:

U{Qi j , φ} =
∫

dr

{
f (Qi j , φ) + K1

2

(
∂k Qi j

)2

+ K2

2

(
∂i Qi j

)2 − Wξ Qi j ∂iφ∂ jφ − Ei E j Qi j

}
. (1)

The first term of equation (1) is the free energy of the bulk nematic phase:

f (Qi j , φ) = − A

2

(
1 − φ

φ∗

)
Qi j Q ji − B

3
Qi j Q jk Qki + C

4

(
Qi j Q ji

)2
, (2)

where A, B and C are the positive constants. In the region where φ > φ∗, a system becomes
isotropic. In this study, we employed φ∗ = 0.5 such that the inside of each particle should
always be in an isotropic state. The second and third terms of equation (1) represent the Frank
elastic energy, and K1 and K2 are the elastic moduli. Our preliminary simulation indicates that
the second elastic term (K2) does not affect our results presented below significantly, although
we keep K2 in our simulation. Thus, we regard � = √

K1/A as the characteristic length of
the nematic phase and use it as a unit of the length. On the other hand, we neglect the bend-
splay elastic mode K23. The fourth term is the anchoring energy of the liquid crystal on the
particle surface and W represents the anchoring energy per unit area. For W < 0 and W > 0,
the orientational field tends to align parallel (planar) and perpendicular (homeotropic) to the
surface of the particle, respectively. The fifth one represents the effect of an applied external
field E (described below). In this study, we impose a weak external magnetic or electric field
E to realize a homogeneous director field of the background nematic solvent in the simulation
box. However, we note that the field strength is kept weak enough to avoid other field effects
on the results shown below.

The time development equations for the orientational order Qi j and the flow field v are
given by

D

Dt
Qi j = Qik�k j − �ik Qkj + 1

µ1
hi j + µ2

2µ1
Ai j + λi j , (3)

ρ
D

Dt
vi = Fi − φ∂iµ + Q jk∂i h jk + ∂ j

(
hik Qkj − Qikhk j

) − ∂i p + ∂ j�i j . (4)

Here, µ = δ
δφ

U and hi j = −{ δ
δQi j

U − 1
d δi jδkl

δ
δQkl

U} are the effective chemical potential for
particle concentration φ and the molecular force field for nematic order Qi j , respectively [28].
Ai j = 1

2

(
∂iv j + ∂ jvi

)
and �i j = 1

2

(
∂iv j − ∂ jvi

)
are symmetric and asymmetric velocity

gradient tensors. �i j is a mechanical stress tensor for flow field [29]:

�i j = β1(φ)Qi j Qkl Akl +
(

β4 − µ2
2

2µ1

)
Ai j + β5 + β6

2

(
Qik Akj + Aik Qkj

) − µ2

2µ1
hi j , (5)
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where β1, β4, β5, β6, µ1 and µ2 are constants having a dimensionality of viscosity. Following
the concept of FPD [24], the shear viscosity depends upon the particle configuration as β4 =
β̄4 +∑

n �β4φn(r). Thus β̄4 and β̄4 +�β4 correspond to the shear viscosity of the outside and
inside of the fluid particle, respectively. F (r) is the force field calculated from the force directly
acting on particle n, Fn, which is independent of E: F (r) = ∑

n Fnφn(r)/
∫

dr φn(r). Note
that direct interparticle interactions such as the Lennard-Jones one can easily be introduced
for a many-particle system through Fn . λi j in equation (3) is the thermal noise for Qi j . In
the above, we assume that the density of a colloidal particle is the same as that of the host
fluid; thus, the density ρ is spatially homogeneous. The pressure p is determined to satisfy the
incompressibility condition ∂ivi = 0. The time evolution of the position of particle n is then
described by the average fluid velocity inside the particle as [24]

d

dt
rn =

∫
dr v(r)φn(r)

/ ∫
dr φn(r). (6)

It should be noted that the approximations employed above become exact in the limit of
�β4/β̄4 → ∞ and ξ/a → 0 [24].

Here we describe the details of our simulation. The length, time, and force are normalized
by the characteristic length � = √

K1/A, the characteristic rotational time τQ = µ1�
2/K1,

and the elastic modulus K1, respectively. The external magnetic field is also scaled by√
K1 Q2/(�2�χµ0). We set B and C as B/A = 25 and C/A = 20. We define Q

as the degree of nematic orientational order below the isotropic–nematic transition as Q =
(B + √

B2 + 24AC)/(6C). Hereafter, the scaled value of a variable x is denoted as x̃ .
Throughout this paper, we employ the following parameters. The characteristic length is
� = 2×10−8 m, the Frank elasticity is KF = K1 Q2 = 5×10−13 N, the characteristic rotational
time is tQ = 5.2 × 10−6 s, and the shear viscosity is η = 10−2 Pa s. The external alignment
field E is scaled as E0 = √

KF/(�2�ε) = 2.6 × 107 V m−1 (�ε = 1.8 × 10−12 F m−1) for
electric field or E0 = √

KF/(�2�χµ0) = 1 × 108 A m−1 (�χµ0 = 1.25 × 10−13 H m−1)
for magnetic field. The Reynolds number ρK1/(ηµ1) = 0.02, the ratio between the two Frank
elasticity moduli is K2/K1 = 0.5, and the ratios among the viscosities of the nematic phase
are µ1 Q2/η = 0.65, −µ2/(2µ1 Q) = 2.0, (β5 + β6)Q/(2η) = 0.06, and β1 Q2/η = 0.1. The
viscosity ratio between the inner and outer part of a particle is set to be (β̄4 + �β4)/β̄4 = 50.

We solve the time development of the particle positions and the orientational field (see
equation (3)) using the explicit Euler scheme, whereas that of the flow field (see equation (4)) by
the MAC (makers and cell) method with a staggered lattice, in which we set the time increment
to be �t̃ = 0.01. In this study, we set ξ = � for simplicity and employ ξ as a lattice size.

Next we mention a useful technique employed in our simulation. The orientational order
parameter Qi j = 3

2 Q[ni n j − (1/3)δi j ], which is a traceless and symmetric tensor, has five
ingredients in 3D. However, only three of them are independent of each other. In computation,
it is not easy to choose these three variables from the five since x , y, and z axes have to
be treated equally. For example, we can take Qxx , Qyy , and Qxy as the three independent
ingredients; in this case, however, here the z axis is treated specially. Furthermore, Qxx , Qyy ,
and Qzz cannot be the three independent ingredients. To overcome this problem, we solve the
dynamics of the tensor field using the vector, which is defined as qi = Qni . Using a vector
qi , the tensorial order Qi j and its time development is easily calculated, using the relations
Q = √

qi qi and ni = qi/Q. In this scheme, the time development of qi is described as
q̇i = Q̇ jk{ni n j nk + (d − 1)δikn j }/d (d: the spatial dimensionality).

In our simulation, a Saturn-ring defect is formed around a particle under an alignment
field E along the z axis (figure 1(b)). This field E is used to align the nematic director
and can be an electric, magnetic, or surface field. In figure 1, we applied an external field
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corresponding to an electric field Ez = 1.3 V mm−1 or a magnetic field Ez = 5.0 A mm−1.
Figure 1(a) shows a snapshot of particles of radius a = 70 nm dispersed in a nematic solvent.
The volume fraction is 1.8%. The particles are rather homogeneously suspended for this
volume fraction, which is suitable for particle separation. The particles have various anchoring
strengths in the range 1.25 < W < 3.75 (×10−4 N m−1). When the mass, charge, and
size of the particle are the same as those of other particles, it is difficult to separate them
with conventional methods. However, if the particles have different surface properties as in
figure 1(a), they may be separated in terms of the surface properties, using a nematic solvent as a
host liquid. To check this, we apply a constant force directly on the single particle (a = 120 nm;
W = 2.5 ×10−4 N m−1) either parallel (along the z axis) or perpendicular (along the x axis) to
the director field of the background nematic solvent; i.e., (0, 0, Fz) and (Fx , 0, 0), respectively.
Figures 1(b)–(i) show simulated snapshots of a particle (green) accompanying a Saturn-ring
defect (blue) for both E ‖ F ((b)–(e)) and E ⊥ F ((f)–(i)).

First we consider a case of E ‖ F . In this case, a particle always moves along the applied
force F . For a weak force, the relative position of the defect to the particle almost remains
the most stable position at rest (figure 1(b)). With an increase in F = |F |, the defect position
tends to be shifted backward from the original configuration, as shown in figure 1(c). As the
separation between the particle and defect approaches the particle size with an increase in F ,
the ring defect gradually shrinks. As the separation becomes even larger, the defect tends to be
inclined and elongated along F (figure 1(d)). The plane of a ring defect is selected randomly
under the constraint to be tangential to a cone axisymmetric about the z axis. This configuration
may be selected to reduce the dissipation due to the friction between the defect and the nematic
solvent. However, the defect can still follow the particle with a delay and the motion of a
particle with defect eventually reaches a steady state. For a force beyond a certain strength, on
the other hand, the defect cannot catch up with the particle anymore; in other words, it escapes
from the particle, as shown in figure 1(e). In this case, a steady state is never observed; namely,
the separation between the particle and the defect and the resulting stored elastic energy excess
to that at rest (F = 0), �U , both increase with time. However, when �U exceeds the energy
gain due to the formation of a Saturn-ring defect, the surface anchoring is removed, or the
defect disappears; then �U should stop increasing. We note that the escape of the defect does
not break the axial symmetry of the particle motion with respect to the surrounding director
field and thus a particle moves along the force applied.

For E ⊥ F , we observe even more exotic behaviour. For a weak force, the defect almost
remains in the most stable configuration at rest (figure 1(f)). Interestingly, however, the particle
does not move along the applied force F and is lifted up or down (vx , vz �= 0; vy = 0). This
is because there is a defect toward the direction of particle motion; since the decrease in the
distance between the defect and the particle costs elastic energy, the defect acts as an obstacle
for the particle motion. Since F is set to be completely perpendicular to E, the two directions
of motion in parallel to the z axis are equivalent and thus one of them is randomly selected
by the thermal noise in each simulation. We can intentionally break this symmetry by pulling
the particle in a slightly different direction. With an increase in the force, the defect position
is slightly shifted from the particle centre (figure 1(g)). Unlike the case of E ‖ F , however,
the defect cannot easily escape from the particle even for a strong applied force. When the
force exceeds a certain threshold, the rear part of the defect becomes retarded from the particle
(figure 1(h)). The defect becomes more and more elongated with time, and does not reach a
steady state. If we increase the force further, the front part of the defect enters the particle
(figure 1(i)). This penetration of the defect into the particle indicates the loss of anchoring at
the front surface. It is worth noting that for both cases the deformed director field recovers the
original configuration at rest if the applied force is turned off.
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(a)

(b)

Figure 2. Time evolution of the stored elastic energy for various strengths of the applied force.
(a) E ‖ F and (b) E ⊥ F . The solid, dashed, and chain-dashed lines correspond to figures 1(b)
and (c), (d) and (e) for E ‖ F and (f) and (g), (h) and (i) for E ⊥ F , respectively.

It has been known [17] that the motion of a particle in a nematic solvent is not necessarily
along the applied force, and the Stokes law for this situation is described as F = γ̄v with
γ̄ = γ⊥ Ī + (γ‖ − γ⊥)z ⊗z, for small Er . Here γ‖ and γ⊥ are the effective friction coefficients
for the parallel and perpendicular motion of a particle in a uniform nematic fluid, respectively,
z is the unit vector along the background nematic solvent (z axis), and ⊗ is the dyad operator
producing a tensor from two vectors. This relation tells us that a particle moves along the z
direction only if the force is perpendicular or parallel to the direction of the field (z direction).
In our simulation of E ⊥ F , however, the Stokes drag cannot be described by the above simple
relation, which predicts the motion along the force for this geometry. The symmetry of the
motion is spontaneously broken due to the presence of an obstacle in front of it and the system
enters a new type of a nonsteady state. This indicates the breakdown of the linear approximation
that the director field does not contribute to the dynamics, which is satisfied at low Ericksen
numbers.

Figures 2(a) and (b) show the time evolution of the stored elastic energy (see equation (1))
for E ‖ F and E ⊥ F , respectively. When the applied force is weaker than a critical value,
�U increases with time in the early stage, but reaches the steady state value for t > 1 ms.
�U in the steady state is roughly proportional to the force strength F for both figures 2(a) and
(b). For a force beyond a critical value, on the other hand, the elastic energy grows with time
indefinitely, which indicates the escape of the defect from the particle (figures 1(e), (h), and (i)).
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Figure 3. Dependence of the particle mobility v/F on the strength of the force F for E ‖ F and
E ⊥ F . For E ⊥ F , the particle does not move along the force; thus, we plot the two mobilities,
which are in parallel and perpendicular to the force (see the inset figure). Note that the absolute
value |vz |/Fx is plotted for the lift-up mobility since the two directions of the motion along the z
axis are equivalent. Here we note that the absolute value of the frictional force from the solvent
significantly depends upon the simulation box size [24].

The critical force, beyond which the defect escapes from the particle, is Fz ≈ 30 pN for E ‖ F .
For E ⊥ F , on the other hand, there exist two characteristic forces, Fx ≈ 25 and 35 pN, which
correspond to the escape of the rear part of the defect (figure 1(f)) and the penetration of the
front part into the particle (figure 1(g)), respectively. For E ‖ F , we can see the overshoot
behaviour in �U for Fz > 20 pN before �U reaches the steady state value. The overshoot
behaviour reflects the change in the orientation and shape of the ring defect (figure 1(d)), which
occurs when the separation between the particle and the defect becomes of the order of the
particle size. Similar behaviour is also seen for Fz > 35 pN, where the defect cannot follow
the particle any more. The overshoot behaviour suggests the existence of an energy barrier for
transformation between a Saturn-ring defect configuration and the others [1].

Figure 3 shows the dependence of the particle mobility on the strength of a driving force.
As described before, the particle moves along the applied force (mobility vz/Fz) for E ‖ F .
For E ⊥ F , on the other hand, it does not move along the force. Thus, the particle has a
component of the velocity along the orientation of the background nematic solvent (|vz |/Fx ) as
well as that along F (vx/Fx ). We note that the mobility of the particle moving in an isotropic
solvent having the same viscosity η is estimated to be v/F ≈ 2.3 × 107 s kg−1 here.

For E ‖ F , the mobility decreases with an increase in force. This is because part of
the applied force is used to shift the position of the defect relative to the particle, paying the
resulting elastic energy cost. For E ⊥ F , the mobility along the applied force also decreases
with an increase in the force, although the degree of the nonlinearity is weaker than for E ‖ F .
On the other hand, the mobility normal to the force becomes significantly smaller for large F .
This means that the ratio, |vz |/vx , decreases with an increase in F ; namely, the particle motion
is more aligned along the direction of the applied force for stronger F . The mobility is always
larger for E ‖ F than for E ⊥ F , but its difference becomes smaller with an increase in the
force. Finally we note that there is no discontinuous change in the mobility around the critical
values of F .

Here we show an example of surface-sensitive particle separation. Figures 4(a) and (b)
represents the motion of three particles with different anchoring strengths W immersed in a
nematic liquid crystal aligned such that E ⊥ F . A particle with strong surface anchoring
changes the direction of motion, whereas a particle with weak or no anchoring moves along
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E

F

t = 0

(a)

(b)
t = 1 ms t = 2 ms t = 3 ms

t = 0 t = 250 s t = 500 s t = 1 ms

E × F

Figure 4. Demonstration of surface-sensitive particle separation. Particles with different anchoring
strengths are dragged by an external force F = 6 pN (a) and F = 20 pN (b) in a nematic liquid
crystal aligned such that E ⊥ F . The anchoring strengths of the blue, green, and red particles
(bottom to top) are W = 1.5, 2.0, and 2.5 × 10−4 N m−1, respectively.

Figure 5. Dependence of the particle mobility both parallel and perpendicular to the field on the
anchoring strength W and the driving force Fx . The inset shows the relationship between W D

c
and vx .

the driving force. The threshold value of W , which separates vz = 0 and vz �= 0, depends
upon the driving force Fx (compare figures 4(a) and (b)). This means that the direction and
speed of particle motion are crucially dependent upon both the surface anchoring properties
and the force Fx . Figure 5 shows the dependence of the particle mobility both parallel and
perpendicular to the field on the anchoring strength W . The threshold anchoring strength in
the dynamic situation W D

c increases with an increase in the particle velocity vx (see below and
the inset of figure 5). We can also see a sharp change of the direction of motion at W D

c as well
as the monotonic decrease of the mobility with an increase in W above W D

c . This correlation
among the particle mobility, the direction of motion, the anchoring strength, and the driving
force may be applied to separation of particles in terms of the surface properties.

Finally we discuss physical mechanisms responsible for this exotic behaviour. First we
consider the defect escape from a particle (figures 1(b)–(i)). We note that the key process of
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defect motion is the director rotation. Thus, the relevant viscosity for the Ericksen number is
the rotational viscosity µ1, and not the shear viscosity η as often assumed. Then the frictional
force is calculated as µ1v/�, where � is the characteristic director correlation length, or the
characteristic size of the defect core. The characteristic elastic force is, on the other hand,
K1/�2, where K1 is the Frank elastic constant. Thus, the relevant Ericksen number of this
problem is Er = µ1v�/K1: for Er � 1, the director rotation cannot follow the deformation
rate induced by the particle motion. In our simulation, the defect escape occurs at Er ≈ 1.1
and 0.8 for E ‖ F and E ⊥ F , respectively. This is consistent with the above prediction. The
threshold for E ⊥ F is slightly lower than that for E ‖ F . This may be because the shear
rate is higher at the front and back of the particle than at its sides. If our scenario is correct,
the escape of the defect is easier for larger µ1. We confirm this prediction for E ⊥ F , which
supports the above-proposed mechanism based on the dynamic crossover. We found that the
coupling viscosity µ2 also affects the threshold, especially for E ‖ F , the details of which will
be discussed elsewhere.

Next we consider the phenomenon of defect penetration into a particle for E ⊥ F
(figures 1(d)–(g)). Since the surface anchoring on the front surface has to be removed
upon the defect penetration, the anchoring strength should play an important role in this
phenomenon. The force pushing the defect toward the particle is to be the Stokes frictional
force Fv = ηv�2/a. The energy cost for the front part of the defect to penetrate into the
particle is, on the other hand, estimated as (W − Wc)Ql2. Here l is the separation between
the two contacting points of the defect along the equator of the particle and thus l2 is related to
the area where the homeotropic anchoring is destroyed. Wc is the threshold of the anchoring
strength, below which a Saturn-ring defect becomes unstable. From a simple scaling argument,
we obtain Wc = C K1/a, where C is a non-dimensional constant (C ≈ 41 in our simulation).
Thus, the force recovering the penetrating defect to the Saturn ring is roughly estimated as
Fa = β(W − Wc)Ql, where β is a non-dimensional constant (β ≈ 0.3 in our simulation).
By equating Fv and Fa , we obtain the critical separation as lc = ηv�2/β{(W − Wc)Qa}. For
lc > �, a front part of the Saturn-ring defect penetrates into the moving particle. For a stronger
applied force, lc approaches the particle size a. In this situation, the entire defect cannot follow
the particle and the defect itself becomes unstable and eventually disappears (see the middle
green particle in figure 4(b)). This threshold for the defect disappearance, W D

c (vx), for a driven
particle is estimated as W D

c − Wc = ηvx�
2/(β Qa2). This is consistent with the relationship

between W D
c and vx , which is shown in the inset of figure 4(c). Since the defect escape and

penetration are independent of each other, for small (W − Wc) the penetration of the front part
of the defect into the particle may take place earlier than the escape of the rear part from the
particle with an increase in the force.

To summarize, we demonstrate a new possibility of surface-sensitive particle selection
by using nematic liquid crystal as a solvent. We have developed a novel coarse-grained
simulation method that can simulate a moving colloidal particle in a liquid crystal including
(nemato)hydrodynamics, surface anchoring, and elastic effects (note that our colloid is not
fixed at a certain spatial point) and is also capable of multi-particle simulations. Using this
simulation method, we have demonstrated that the surface anchoring properties change both
direction and speed of motion of a particle driven in an oriented nematic liquid crystal and
proposed a novel principle of particle separation.
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